If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-50r+450=0
a = 1; b = -50; c = +450;
Δ = b2-4ac
Δ = -502-4·1·450
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{7}}{2*1}=\frac{50-10\sqrt{7}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{7}}{2*1}=\frac{50+10\sqrt{7}}{2} $
| 729x+1=27 | | 1/2x-22=11 | | -5n=48-n | | -7=-6x+1 | | 3x+13=347 | | 10t-6t=60 | | X^2-40x+610=300 | | −10(x−1)=10−10x | | -5n-34=-14-n | | 4x-1=512 | | 3x-14=6+x | | x+50=5(x+2) | | 10-1/4k=9 | | 1/5x+3=45 | | 3x+5x=357 | | 12+y/2=-10 | | 0.65*x=1.00 | | 16x+5x-6x=30 | | 1/2(x)(2x+8)=32 | | x-x/1,6=1600 | | 25-0.21x=21.01 | | 5y^2-30y-48=0 | | 2n+42=-n | | 5y^2-30y-40=0 | | x+.15x=100000 | | 9x+29=10x+2 | | 3x+15=28 | | 8x+8+4x-8+12=36 | | 2.5x+1.5=-160 | | 2.5x+1.5=-169 | | x+(x/5)=288000 | | 2s^+5s-3=0 |